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High-Performance Computing for Climate
Modeling as a Planning Tool

e GLOBAL WARMING IS HERE!! ... so now what?
e How will climate change really affect societies?
e Effects of global climate change are local

e Some effects of climate change can be mitigated
e Requires accurate information

Climate simulation can be used as a planning
and policy tool
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California Water Supply:
Critical to California Economy

e Central valley: the nation’s vegetable garden;
e Fifth largest economy on earth;
e Population continues to grow

e Plenty of water — distribution in time and space is the
issue
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Global Climate Change and Water Supply
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Global Climate Change: California
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Figures show projected changes in California region (2xCO, - 1xCO,) from a
joint UCSC/LLNL study.

CASC/CCCM WJB 5



California Water Supply:
Snowpack is a Huge Reservoir
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CA will need >25% new reservoir capacity

Historic storage in major reservoirs
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What specific questions will we address?

e Amounts and spatial pattern of precipitation;

e The partitioning of precipitation between rain and
SNOw;

e The water content of the Sierra snowpack;
e Rates and timing of river flows
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New Univ of California Institute at LLNL

e Institute for Research on Climate change and its
Societal Impacts (IRCCSI) wili

— Address problems of societal impacts of climate
change (on agriculture, human health,water, etc.);

— Combine high-power climate modeling at UC labs
with impacts expertise at UC campuses;

—Increase flow of UC students, postdocs, and
faculty through LLNL;

e Recently approved by the UC President’s Office.
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\D/Ve will pursue 3 “streams” of activity:

1. Apply models to improve understanding of
impacts of climate change/variability on
hydrological cycle

* Use California as the regional area of interest

* Develop/Use quantitative metrics to evaluate
skill

2. Advance the science by improving our models

e improve subgrid scale physics (clouds,
convection, precipitation)

* Increase spatial resolution
* Improve computational efficiency

3. Make our results useful to policymakers and water

managers
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Methodology: High-Res Nested Models
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LLNL leads in high-res modeling

Higher
resolution leads
to improved
simulated
regional climate
and hydrology

CASC/CCCM
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Simulated winter precipitation converges towards
observations as model resolution becomes finer.
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NASA / GSFC fvgcm climate code

e Finite-vol dynamical core

e Lagrangian vertical
coord system

e Fast numerical algorithm

e Adaptable to massively
parallel architectures

e “Highly scalable”

CASC/CCCM

Terrain-following Lagrangian Control-Volume
Coordinate system of the DAO "Dynamical Core'

Example. mare than 6.6 million "celis™ at 55 km resolution
with 32 vertical layers

Basic physical laws for cach "eell™
1. Mmass ¢ ﬁfl.‘;n-F'r".-"Eil'R}r.l
2 momentum consarvation
3. enargy conservalion

nm-i;:?ﬂL"_:]!__m
v
I I!: el £t F]
o \
[ l \
| i ~ _!_ -I |II
...... L | ﬂ""h.,_\_\xll-
Lagrangian sunaces
'i ‘.{_,_. Grange
. /
| %

Earih's surface

20 [x-Z) crogs seckon of M aimosphens

WJB 13



Climate Simulation Codes
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Computational Requirements

e 50 year climate simulations at ~ 60 km resolution

— ~ 4 months wall time with 3 latitude stripes / node
and 2 processors per node on MCR machine

— 10 Terabytes data

e 50 years regional simulation @ 5 km resolution

e Surface hydrology simulation
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Livermore MCR linux cluster

*11.06 Tflops (1116 x 2 Intel 2.4 GHz processors)

4.6 TB memory

*135 TB local disk

*110 TB global disk (13 B:F)

320 MB/s MPI bandwidth and <5 us latency over QsNet

*120 MB/s transfers to Archive over dual Jumbo Frame Gb-
Enet from each Login node

25 MB/s POSIX serial I/O to any file system

Lustre file system with 4.48 GB/s delivered parallel 1/0
performance
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Livermore MCR: Processing power

e Achieved 7.6 TFLOP/s (Linpack) on 12/3
* Dual 2.4Ghz Intel “Prestonia” with hyperthreading
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* Memory: 4GB PC-200 DDR SDRAM
e Local disk: 120GB ATA100 EIDE hard drive

* Quadrics QSNet Elan3 PCI adapter
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ivermore MCR: I/O and Storage
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Fvgcm on MCR: General Observations

e The Good:

— MCR processors fast

— fast fluid dynamics in Fvgcm code

— tested at GSFC (SP, SGI, linux cluster) and LLNL (SP)

— ~60 km resolution: 1 sim year / 3 days wall time w/ 120 proc
— MPI2 (1-sided comm) appears to run ~ 20% faster than MPI1

e The Bad:
— Porting took longer than expected (weeks, not hours)
— Problems with MPI1 (2-sided comm) on mpi_gather
— OpenMP thread problems: 1 cpu per node utilization

— Fvgcm 1-d domain decomposition severely limits machine

utilization
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Fvgcm climate code mapped to MCR

"o Domain decomposition:
Mpi bands in latitude
Example: “60 km” resolution
576 lon x 360 lat x 32 vert
(6,635,520 cells)

120 shared mem nodes max

OpenMP threads

Mainly vertical
2 proc / node on mcr cluster
240 proc => 27648 cells/proc

e Single processor output :
global gather to master
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Fvgcm on MCR

e Output through master only after global gather =>
— buffer problems with mpi1
— potentially slow output ?

e OpenMP threads fail (seg fault) with > 1 cpu / node

— problem not yet solved
— only observed on MCR machine
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Scale-up Results
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CPU and Storage Requirements

~ 60 km resolution: 576 x 361 x 32 (d32)

Simulated Data Storage

I(:)Ilirpactle Wall Time Requirements
ero (Terabytes)

1 month 5 hours 0.17

1 year ~ 3 days 2

50 years ~ 4 months 10

e ~2x Speedup with OpenMP ?

CASC/CCCM
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Initial Simulations: 60 km resolution (d32)

Mean large-scale winter precip rate (mm/day)

B32 resolution: ~ 240 km D32 resolution: ~ 60 km
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e Significant climate impact study: effects of increased
CO2 on California water supply

e Livermore MCR linux cluster has fast processors —
good candidate for climate code

e Machine utilization limited by code domain decomp

e Unique MCR “features” cause problems with MPI and
OpenMP; not seen on NASA/GSFC linux cluster

e Initial indications: total compute time quite good
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Future Work

e California Water Project
— Climate simulation for planning

—May have high impact on agriculture and other
industries in California

—High-resolution simulation essential

e Long-term Climate Modeling

— Better domain decomposition to take advantage
of large node availability

— Multi-resolution grids: regional impacts

— /O is important!

— Move to commodity clusters a “good thing”:
porting is still a major issue
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